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The transition to weak turbulence via spatiotemporal intermittency has been studied in the Taylor-Dean
system when the inner cylinder is fixed and only the outer cylinder is rotating. The spatiotemporal intermit-
tency regime is characterized by the coexistence of laminar domains and turbulent patches for the same value
of the control parameter. The transition is supercritical, but a particular boundary condition induces an imper-
fection. Statistical analysis of the spatiotemporal intermittency shows that the distribution of laminar domains
by widths follows a power law decay near the onset, while it is exponential for higher values of the control
parameter. The exponential distribution of the laminar domains has a definite threshold near which the corre-
lation lengths and correlation times of laminar and turbulent domains diverge, reinforcing the analogy with
second-order phase transitions. The exponents measured near the critical points in this experiment differ from
those observed in other systems, thus showing that the spatiotemporal intermittency is not universal in char-

acter.

PACS number(s): 47.27.Cn, 47.20.Ky, 47.52.+j

I. INTRODUCTION

The phenomenon of turbulence has been and remains one
of the challenging problems of nonlinear physics, even
though much effort has been devoted to such an important
problem with its many applications in different areas of en-
gineering and geophysics. Recently there has been greatly
renewed interest in the problem of turbulence due to the
accumulated results from several problems in nonlinear
physics [1], from high precision experiments [2], from com-
puter simulations of flow turbulence, and from interesting
directions of investigation such as the multifractal approach
[3]. These results have given rise to promising directions of
attack. (A recent review of the state of the art of turbulence
studies can be found in [4].) For example, the transition to
chaos in small systems involving only temporal modes has
been generally understood and different scenarios have been
established [5]. The transition to chaos in extended systems
involves spatial as well as temporal degrees of freedom,
which might keep or lose their spatial coherence when an
external constraint is increasingly applied to the system
[1,6]. There are many systems with large aspect ratio which
exhibit spatiotemporal chaos, for example Rayleigh-Bénard
convection in large boxes [7], the Taylor-Couette system [8],
the Taylor-Dean system [9], the printer’s instability [10], and
the Faraday experiment [11,12], among others.

In large aspect ratio systems, a particular scenario has
attracted much attention, namely so-called spatiotemporal
intermittency or STI. This phenomenon is characterized by a
space-time mixture of fluctuating spatially ordered domains
and turbulent patches in the same system for a given value of
the control parameter. It is often observed in boundary layer
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flow [13], in pipe flow [14], in plane Poiseuille flow [15,16],
and in the flow between counter-rotating cylinders [8,17].
Spatiotemporal intermittency has been observed in numerical
simulations of coupled map lattices [18], in nonlinear partial
differential equations such as the damped Kuramoto-
Sivashinsky equation [19] or the complex Ginzburg-Landau
equation [20,21], and in probabilistic cellular automata [22].
In one-dimensional extended systems, spatiotemporal inter-
mittenicy has been observed in experiments on Rayleigh-
Bénard convection in annular geometries as well as rectan-
gular geometries [23] at high Rayleigh numbers. The same
type of transition has been reported in the printer’s instability
[24], in the Faraday experiment [25], and in electromagneti-
cally forced linear vortices [26]. In most of these cases, the
regime of spatiotemporal intermittency displays some fea-
tures of a second-order phase transition in equilibrium sys-
tems, such as the divergence of the correlation length in the
neighborhood of a threshold value that depends on the sys-
tem. This striking property was pointed out by Pomeau [27],
who conjectured that the transition to chaos via spatiotempo-
ral intermittency is analogous to the process of directed per-
colation. In fact, above a given value of the control param-
eter, the turbulent bursts appearing in the space-time diagram
can be associated with “‘active’ or ‘“‘contaminant’ regions in
the laminar (“‘passive” or “absorbing”) background. In all
the experiments reported above [23-26], the general features
of the spatiotemporal intermittency, such as the spontaneous
nucleation (characterized by a power law decay of the lami-
nar domains) and the contamination (in which the laminar
domains decay exponentially) have been given, but the ex-
ponents and characteristic lengths vary from one experiment
to another. These results suggest that spatiotemporal inter-
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mittency does not possess a universal character. Such univer-
sality might be destroyed by diverse factors such as modula-
tion of the laminar flow pattern, or the existence of spurious
additional length scales due to subtle long-range correlations
in the laminar state which differ from one system to another
[28].

In this paper, we report the results of an experimental
investigation of the spatiotemporal intermittency observed in
the Taylor-Dean system when the inner cylinder is fixed and
the outer cylinder is rotating. In this configuration, with large
aspect ratio, we have previously shown that the first transi-
tion is to a time-dependent traveling roll pattern, followed by
a highly hysteretic bifurcation to a stationary roll pattern
[29]. Upon increasing the control parameter, the stationary
pattern becomes oscillatory, and an Eckhaus instability can
induce spatiotemporal defects which in turn destabilize the
pattern and may induce turbulent bursts. The spatiotemporal
intermittency regime exists in a finite range of the control
parameter before spatially homogeneous turbulence sets in.
The transition to spatiotemporal intermittency is perfect
when the end boundary rings are attached to the fixed inner
cylinder, while it is imperfect with a definite threshold when
the rings are rotating together with the outer cylinder. We
confirm that whether the rings are fixed or rotate, there exists
a definite threshold beyond which the STI regime displays
properties similar to those of second-order phase transitions.

The paper is organized as follows: Secs. II and III de-
scribe the experimental setup and the data acquisition proce-
dure. The results are presented in Sec. IV and their discus-
sion in Sec. V. Section VI contains concluding remarks.

II. EXPERIMENTAL SETUP

The Taylor-Dean system has been described in detail pre-
viously [29]. It consists of two horizontal coaxial cylinders
(which may rotate independently) with a partially filled gap
[Fig. 1(a)]. The inner cylinder, made of black Delrin plastic
with radius a=4.49 cm, is fixed in the present experiment.
The outer, with radius »=5.08 cm, is made of Duran glass
and rotates at angular velocity (). The gap between the cyl-
inders is d=b —a =0.59 cm, the radius ratio 7=a/b=0.883.
Teflon rings are attached to either the inner cylinder or to the
inner surface of the outer cylinder a distance L=53.40 cm
apart, giving an aspect ratio I'=L/d=90, large enough to
realize a one-dimensional extended system. The working
fluid is water or a 28% by weight mixture of glycerol and
water with 1% Kalliroscope AQ 1000 added for visualiza-
tion. The working room temperature is 7=21 °C, and the
kinematic viscosity is »=0.98X10"2 cm?/s for water or
v=2.14X10"2 cm?/s for the glycerol-water mixture. The fill-
ing level fraction is chosen to be n=0 ;/27=0.75 (where ©
is the angular measure of the azimuthal extent of the fluid),
although the particular value does not have a significant in-
fluence on the phenomena reported here. Away from the end
rings, the base flow state consists of a purely azimuthal flow
in the bulk [Fig. 1(b)], recirculation rolls near one free sur-
face, and a boundary-layer-type flow near the other free sur-
face [30]. The bulk flow velocity field consists of two parts:
the Couette component, driven by the rotating cylinder pull-
ing fluid around the annulus, and the Poiseuille part driven
by the azimuthal pressure gradient necessary to reverse the
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FIG. 1. (a) Geometry of the experimental configuration. (b)
Base flow velocity profile far from the free surfaces: V(x)=x(3x
—2); the flow has a nodal surface at xo=§, and it is potentially
centrifugally unstable in the zone %<x<% and stable elsewhere.

flow at the free surface. The Rayleigh stability criterion ap-
plied to the curved streamline flow shows that the Couette
component is stable while the Poiseuille part is subject to a
Dean centrifugal instability [31]. The recirculation rolls and
the boundary-layer flow have azimuthal extensions of about
d from the free surfaces. In order to minimize the free sur-
face effects, we chose a relatively small gap in comparison
with the mean radius of the system (d/R=0.1). Oscillations
of the free surfaces induced by gravity may be avoided by
rotating the cylinder at reasonably low angular speeds. This
has motivated in particular our choice of working fluid solu-
tions with relatively very low viscosity in order to obtain
higher values of the control parameter with slow rotation
speeds.

We define the control parameter to be the Taylor number
with respect to the outer cylinder: Ta=R,(d/R)"?, where
Ro=Qbd/v is the outer cylinder Reynolds number. In this
work, lengths are scaled by the gap size d, velocities by the
diffusion velocity v/d, and time is scaled by the radial dif-
fusion time 7,=d*/v. For water 7,=36 s, and for the
glycerol-water mixture 7,=16 s. To achieve quasistatic con-
ditions and to avoid spurious hysteresis, we have operated
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with a time-averaged ramping rate (experimental variation of
the outer cylinder Reynolds number between intervals for
data collection) r=dR,/dt*=<3, where t*=1¢/T". The proce-
dure was to slowly increase R, hold it constant for 20 min
prior to starting data collection, maintain R, constant during
data collection (12—-20 min), and then resume ramping R,,.

III. EXPERIMENTAL PROCEDURE
A. Space-time diagrams

Spatial dependence data have been obtained using a
28-35 mm variable focal length lens to form an image of the
visualized flow on a 1024-pixel charge-coupled device linear
array interfaced through a computer-automated measurement
and control (CAMAC) system to a computer. The line of
1024 pixels is oriented parallel to the cylinder axis 1 cm
below the free surface in the front face. The output consists
of intensity maxima and minima which correspond to the
centers and boundaries of the rolls. Space-time diagrams are
then produced by plotting intensity versus axial position at
regular time intervals (Ar=0.14 s) for different values of the
control parameter. The analysis of these plots yields the roll
size and other quantities that characterize the evolution of the
roll pattern in time and in space with the control parameter.
For the analysis of the spatiotemporal intermittency, we have
taken data files consisting of 5000 frames, corresponding to a
total time of approximately 12 min, which is long enough for
accumulating good statistics for the phenomenon under con-
sideration.

B. Binarization of the space-time diagrams

To efficiently extract a useful picture of the behavior in
the intermittent state, it is necessary first to identify the tur-
bulent and laminar domains. A binary representation is the
simplest approach, and the one usually taken. Binarization of
the space-time diagrams makes use of the fast time variation
within the turbulent bursts compared with laminar regions. It
also emphasizes that the interest is in the burst itself, not the
structure of the turbulence. Taking advantage of the latter,
the data are first reduced by taking an average of ten space
points. This reduces the data set from 1024 pixels in space to
102. The next step is to calculate the second difference in
time of the intensity pattern I"(¢t)=1(t+2)—21(t+1)
+1(t). To determine if a pixel is turbulent, the second dif-
ference 1" is compared to the space average of I”. If the
difference, 1" —(I"), is greater than an arbitrary cutoff value,
the pixel is said to be turbulent; otherwise it is labeled lami-
nar. This produces a binary space-time diagram of laminar
and turbulent regions.

Since the binarization procedure is not perfect, a data
massaging routine is then applied. The routine makes use of
the fact that a turbulent burst is completely turbulent within
its boundaries in space and time; i.e., there should not be
laminar pixels inside a turbulent burst. Also, the turbulent
bursts are of a finite size, and spurious turbulent pixels must
be removed. To implement this, the routine’s first step is to
check if each turbulent pixel has two or more turbulent
neighbors out of the eight nearest neighbors in space and
time. If it does, it remains turbulent. If it does not, it is
switched to laminar. In a second pass over the data, if any
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FIG. 2. Diagram of the different states observed in the Taylor-
Dean system when the inner cylinder is fixed.

laminar pixel has three or more turbulent neighbors, it is
switched to turbulent. A third pass is similar to the first,
except that a turbulent pixel must now have three or more
neighbors to remain turbulent. During the next pass over the
data, if the ith pixel is turbulent and the i +5 (in space) pixel
is turbulent, all pixels in between are also considered turbu-
lent. The fifth pass involves the same procedure, except it
checks the fifth pixel away in time and the last pass checks
the fifth pixel in space again. This routine is designed to
remove spurious turbulent pixels and to fill in gaps in the
turbulent domains that are not real.

Variations of this routine have been used with different
nearest neighbor requirements, and different massaging
lengths. A comparison with the raw data shows that the pro-
cedure is insensitive to the parameter variations when ap-
plied with a corresponding slight adjustment of the cutoff
value. In addition, the procedure, as described above, is ap-
plied with numerous cutoff values. The binarized output then
is compared with the raw data to ensure its accuracy.

The binary representation allows us to measure the main
characteristics (order parameter, statistics, etc.) of the spa-
tiotemporal intermittency.

IV. EXPERIMENTAL RESULTS
A. Sequence of states

The sequence of the states observed in the system is given
in Fig. 2. The first roll pattern occurs in the form of traveling
inclined rolls at approximately Ta=97. These rolls appear
near the recirculation zone, and their axial extent grows with
the control parameter until they fill the whole system [Fig.
3(a)]. The transition does not show any hysteresis when
ramping up and down, within our resolution of 1%. The drift
velocity v,=27, and the wavelength of the pattern is
A=1.170.

For Tae[100,115[, the pattern is a mixed state of traveling
rolls superimposed on a stationary roll pattern with different
wavelengths \; and \, [Fig. 3(b)]. Such a state has also been
observed recently in experiments in the Taylor-Couette sys-
tem with axial flow [32].

For Ta=115, the mixed state becomes stationary. This
transition is subcritical and highly hysteretic. It is character-
ized by the existence of a front separating the disappearing
chaotic state and the emerging almost stationary roll pattern.
The space-time plot exhibits an asymmetric roll pattern
where large and small rolls alternate in a chaotic way, giving
rise to mean wavelengths in a ratio % [Fig. 3(c)].

The stationary roll pattern becomes unstable to monope-
riodic oscillations for Tae[150,203[ [Fig. 3(d)], followed by
biperiodic oscillations for Tae[203,225[. The biperiodic os-
cillations are characterized by two different frequencies; the
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FIG. 3. Space-time diagrams of the different states observed in the Taylor-Dean system before weak turbulence sets in: (a) Traveling rolls
pattern for Ta=100. (b) Mixed state of traveling and stationary rolls for Ta=111. (c) Stationary roll pattern for Ta=115. (d) Oscillatory roll

pattern for Ta=174.

first oscillation frequency corresponds to a wavy-vortex-like
instability, while the second frequency corresponds to a
modulational type instability. It has been observed in particu-
lar that the oscillations occur between two neighboring rolls
inside the large wavelength, and have properties that are
similar to a collective mode with fixed nodes.

Upon a further increase of the control parameter, the os-
cillating pattern exhibits a continuous nucleation of spa-
tiotemporal defects (collisions at some space positions and
roll generation at others) which already reduce the correla-
tion length of the pattern and induce a chaotic behavior.
These spatiotemporal defects generate turbulent bursts in our
system which last a short time before disappearing from the
flow pattern. For larger values of the control parameter, the
spatiotemporal intermittency is sustained and the typical size
of laminar domains decreases.

The regime beyond the spatiotemporal regime is very tur-
bulent, and it has not been characterized by the available
experimental tools. It should just be mentioned that the flow
exhibits some underlying spatially coherent rolls with a
mean wavelength comparable to the large wavelength of the
stationary pattern.

B. Spatiotemporal intermittency

The spatiotemporal intermittent regime is characterized
by the coexistence of a spatially ordered pattern with turbu-
lent patches or bursts which appear irregularly in time and in
different positions [Figs. 4(a)—4{(c)]. Using an analogy with
thermodynamics, the spatiotemporal intermittency can be
considered as a two-phase state with one phase stable and the
other metastable. The first turbulent bursts result from the
Eckhaus-type instability when rolls collide or are generated.
This process forces the pattern to adjust its wavelength and
to nucleate localized perturbations which will be driven
away in the azimuthal direction. These bursts occur sponta-
neously, do not propagate into the neighboring laminar state,
and decay rapidly. For higher rotation rates of the cylinder,
the turbulent bursts grow in time, and in size, by propagating
into neighboring laminar domains. The turbulence spreads in
this regime: the size of laminar domains diminishes as the
control parameter increases, giving rise to an almost com-
pletely turbulent state. Therefore, we distinguish two dy-
namic types of turbulent bursts: localized turbulent patches
resulting from the nucleation of defects, and active turbulent
bursts which tend to destroy laminar domains.
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FIG. 4. Space-time diagrams of the patterns and their binarized versions in the spatiotemporal regime: (a) Ta
Behavior of the turbulent fraction

STI; the pattern contains few turbulent domains. (b) Ta
Using the binarization procedure on the space-time dia-

domains in the pattern have approximately the same average
grams of the flow pattern as described in Sec. II, we have
represented in black the turbulent domains and in white the
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FIG. 5. (a) Spatial turbulent fraction as a function of the control parameter; the crosses (+) correspond to the case when the end rings
are attached to the inner cylinder, the squares ({J) to the case when the end rings rotate with the outer cylinder. In the latter case, the
imperfect nature of the bifurcation comes from the Ekman cells, which induce a localized turbulence to the ends before the onset of
spatiotemporal intermittency in the bulk flow. (b) Intermittency factor measured at different positions (+) at x=8.7, ((J) at x=16.8, (*) at

x=29.1, and (<) at x=38.3.

are, respectively, the ratio of the total area of turbulent
patches to the total area of the space-time diagram and the
ratio of the mean duration of turbulent patches to the total
measurement time. The turbulent fraction plays the role of
the order parameter in this problem, and varies with the con-
trol parameter Ta [Figs. 5(a)-5(c)]. The behavior of the tur-
bulent fraction depends on the boundary conditions imposed
on the flow: whether the end rings are attached to the inner
cylinder or rotate with the outer cylinder affects the details of
the transition process.

When the rings are attached to the fixed inner cylinder,
the transition to spatiotemporal intermittency occurs via a
perfect bifurcation with a definite onset. The spatial turbulent
fraction exhibits a net threshold at Tay=228=*1, indicating
the transition to spatiotemporal intermittency [Fig. 5(a)].
Near the onset of the STI, the turbulent fraction grows as a
power law  with the control parameter, ie.,
F(Ta)=f,[(Ta—Tay)/Tay]’, where the exponent B=1.30
*0.26. The intermittency factor, i.e., the temporal turbulent
fraction measured at different spatial locations, shows also a
net transition with a similar linear behavior [Fig. 5(b)].

When the rings are attached to the rotating outer cylinder,
they induce Ekman cells which create turbulence near the
ends for Ta=190. This end region turbulence forces the os-
cillatory Dean rolls and induces localized turbulent bursts. In
that case, the transition to spatiotemporal intermittency is
slightly modified and becomes imperfect. Therefore, for
Ta<Tag, turbulent bursts already occur in the flow, while at
Ta=Ta,, the turbulent fraction has grown to approximately
10% [Fig. 5(a)]. We have measured the different parameters
for this regime, and have found that besides the imperfect
nature of the transition and the slope of the curves f(Ta), the
other characteristics were less modified by the end turbu-
lence. Therefore, STI is a robust property of the flow, and the
imperfection has a real impact only on details of the transi-
tion.

The power spectrum of the spatiotemporal regime is char-
acterized by a broadband background. The noise fraction f,
defined as the ratio of the area covered by the broadband
background A, to the total area A of the spatial power spec-
trum, is approximately the same as the turbulent fraction
measured from the binarized plots (Fig. 6). Thus the noise
fraction represents a precise measure of the turbulent fraction
since it does not depend on an arbitrary imposed cutoff.

Laminar and turbulent domains distribution

We have examined the statistics of the laminar (white)
and turbulent (black) domains by analyzing the distribution
of the domains with their length (Fig. 7). For control param-
eter values close to the onset of the spatiotemporal intermit-
tency, the distribution of the laminar domains may be repre-
sented by a power law N(/)~1* (algebraic decay) over a
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FIG. 6. Noise background fraction as an alternative measure of
the turbulent fraction.
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FIG. 7. Histograms of the laminar domains: (a) In the algebraic regime (Ta=233). (b) In the exponential regime (Ta=237).

factor of 5 range in domain size, somewhat smaller than
found in other experiments on STI [23]. We have found that,
for three separate values of the cutoff, the exponent u=1.7
+0.1 for Tae[228,234]. It should be noted that domains
smaller than In x =1 represent laminar structures of the order
of the roll size and smaller. As previously discussed, the
internal structure of the turbulent bursts is outside the scope
of this work, and therefore the small domains will not be
included in the fits. Furthermore, the longer domains in the
histograms of the algebraic regime exhibit some exponential
falloff reminiscent of the crossover regime found in
Rayleigh-Bénard convection [23]. For Ta=235, the histo-
grams cannot be fit by a power law. For Tae[237,270[, the
distribution of the laminar domains with their size exhibits
an exponential law N(I)~e ™ (exponential decay). The
quantity 1/m=1_ is the characteristic width of the laminar
domains. It decreases with the control parameter with the
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dependence [.(Ta)=1[,(Ta—Ta,)” % where «=0.64 [Fig.
8(a)], meaning that the scales of the laminar domains are
becoming small rapidly in the exponential regime. The value
Ta.=237 was chosen to be the threshold of the second tran-
sition in the spatiotemporal intermittency: below this value,
the turbulent domains are embedded in a laminar back-
ground, and, above it, the laminar zones are embedded in a
turbulent background. The distribution of the turbulent do-
mains exhibits only an exponential regime N(I)=Nye !,
where [, is the characteristic width of the turbulent bursts.
Their characteristic width /, increases with the control pa-
rameter [Fig. 8(b)].

The temporal histograms show similar behavior, in par-
ticular, the algebraic regime and exponential regimes are
seen: the power law gives an exponent u,=1.7 for
Tae[228,237[, and the characteristic time (lifetime) of the
laminar domains decreases with the control parameter after

(b)
50 T T T T T T T T T T
4
40 -
.
30 *y T
1 +
lt
20 * -
+
* 4
N
10 . .
+‘+
P 1
+ + +++’++**‘+
0 -
160 180 200 220 240 260 280

Ta

FIG. 8. (a) Inverse of the characteristic width of the laminar domains in the exponential regime. (b) Characteristic width of the turbulent

domains in the spatiotemporal regime (with rotating end rings).



3502

0.08 . ; ; . . . .

0.06 -1

0.04 + B

0.02 4 1

T T T T T T T
240 245 250 255 260 265
Ta

FIG. 9. Lifetime of laminar domains as a function of the control
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the law: m,~(Ta—237) " %, where a,=0.73. The lifetime of
the turbulent domains grows with the control parameter (Fig.
9).

Correlation function and length

To complete the statistical analysis of the spatiotemporal
intermittency in the Taylor-Dean system, we have computed
the correlation function and correlation length of the laminar
and turbulent domains for binarized space-time plots. The
correlation function is defined as

([I(z+x,0)][1(z,0)])
(I(z,1)?) ’

C(x)= (1)

where /(z,¢)=0 or 1. Below the transition, we assign 1 to
turbulent domains and O to laminar, and the reverse above
the transition. This approach makes clear that we are calcu-
lating correlations of the fluctuations on a background state.
Below Ta,, turbulent domains are a fluctuation on a laminar
background, and vice versa above Ta,. This method of cal-
culating the correlation function is borrowed from the study

(a)
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of spin lattices [33]. From the resulting correlation function
[Fig. 10(a)], we have calculated the correlation length sepa-
rately for both laminar and turbulent domains. The obtained
correlation lengths diverge near Ta, =237 [Fig. 10(b)], show-
ing that there is a separation between two distinct regimes:
for Ta<Ta, the correlation length of the turbulent domains
grows and becomes infinite at Ta=237, while for Ta>237
the correlation length of the laminar regions decreases.
Therefore, the correlation length divergence can be consid-
ered as the hallmark of the critical point corresponding to the
transition to the exponential regime. The behavior of the cor-
relation length near Ta. can be represented as follows:

(Ta—Ta,) "

for Ta>Ta,
¢ (Ta,—Ta)~ v

for Ta<Ta,. @

The best fit gives the following values of the critical expo-
nents for the correlation length: »=0.53, and »'=1.20.
Therefore, for Ta<<Ta,, the turbulent domains are the fluc-
tuations developing in a laminar background, while for
Ta>Ta, the laminar zones are the fluctuations dying in the
turbulent background. The difference between » and v’
might be attributed to the difference in the nature of the
turbulent bursts below and above Ta, . The correlation length
measured that way is approximately the same as that ob-
tained from the raw space-time diagrams. The coherence
time of laminar and turbulent domains has been computed in
the same way and it shows similar behavior, in particular a
divergence near the threshold Ta, of the exponential regime.

V. DISCUSSION OF THE RESULTS
A. Spatiotemporal intermittency in other systems

The spatiotemporal intermittency in the Taylor-Dean sys-
tem exhibits two regimes with two threshold values: the first
corresponds to an algebraic regime with a threshold
Ta,=228, and the second regime is exponential with a
threshold at Ta,=237. For Ta<<237, the turbulent bursts
(metastable phase) nucleate spontaneously, and they are lo-
calized in space and time. The characteristic width of the
laminar domains is infinite, i.e., approximately the same as
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FIG. 10. (a) Correlation function of the binarized space-time plot (Ta=233); measured points (+) are shown, along with a solid line
representing the exponential fit C(x)=Ae ™ ¢, where A =0.995 and £=2.786. (b) The correlation length £ divergence near the critical point.
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TABLE I. Experimental values of different exponents measured in systems exhibiting spatiotemporal intermittency.

Experimental

System B M My a, o, v v

Convection 1.9+0.1 1.9 0.5

in annulus [23]

Convection 0.3%+0.05 1.6+0.2 2.0%0.2 0.50+0.05 0.50%0.05

in channel [20]

Convection 1.7*0.1 2.0£0.1 ~0.50 ~0.50

in annulus [20]

Roll coating 0.45+0.05 0.63+0.02 0.610.02 0.50 0.50

system [24]

Taylor-Dean 1.30%+0.26 1.67+0.14 1.74=0.16 =0.64 =0.73 =0.53 1.20

system

the length of the whole system. For Ta>237, the turbulent
bursts (stable phase) form a connected pattern with an em-
bedding of laminar zones (metastable phase) whose charac-
teristic width decreases significantly with Ta to a few wave-
lengths of the initial pattern. The correlation length of the
laminar and turbulent domains diverge near the value
Ta, =237, which is considered the critical point correspond-
ing to the onset of the exponential regime. (In a recent ex-
perimental study of the capillary ripples [11], the divergence
of the correlation time has been used to determine the onset
of the order-disorder transition.)

In connection with Pomeau’s conjecture, the value
Ta, =237 corresponds to a critical point for a second-order
phase transition. However, the critical exponents measured in
our experiment (B,a,v,v") are different from those predicted
by theories of critical phenomena (Landau mean field theory
[33], directed percolation theory [34], etc.). The spatiotem-
poral intermittency observed in other one-dimensional ex-
tended systems exhibits two distinct regimes (algebraic and
exponential), but the exponents characterizing each regime
and the turbulent fraction differ from one experiment to an-
other. In Table I we give values of different exponents from
various experiments. The differences originate apparently in
the behavior of the laminar background flow pattern on
which the spatiotemporal intermittency sets in. In some
cases, there are localized bursts, as in Rayleigh-Bénard con-
vection [23], or in the Taylor-Dean system, while in the
printer’s instability there are dilation waves which may ex-
plain the difference in the coefficients. Therefore, it is un-
likely that all reported experiments belong to the same class
of STI universality even though they exhibit the main fea-
tures of Pomeau’s conjecture. It is worthwhile to notice that
the different numerical simulations on partial differential
equations ([19],[20]), on coupled map lattices [18] and on
cellular automata [22] have also shown spatiotemporal inter-
mittency with different exponents.

B. Physical origin of STI in the Taylor-Dean system

The question of the physical origin of the spatiotemporal
intermittency in dimensional systems remains open. In the
Taylor-Dean system, there are two plausible causes of the
STTI: a self-excitation mode from the recirculation zone in the
front surface, and the secondary instability of the longitudi-
nal rolls.

Theoretical investigation and numerical simulations of the
recirculation zone [30] indicates that in the front face there
exists an oscillating recirculation roll aligned parallel with
the cylinder axis, with a frequency growing with the control
parameter. We therefore have a system with a natural fre-
quency and with a source oscillating at a frequency depend-
ing on the control parameter. Such systems give rise to the
so-called parametric instability and, after the Mathieu equa-
tion theory, their solutions can be described by tonguelike
curves near the resonance in a convenient parameter space
[35]. Therefore, a resonance mechanism could be at the ori-
gin of the different states observed in this system, the STI
occuring in the tonguelike domain at large amplitude.

The STI could also be induced by the shear instability of
the mean flow, as has been suggested by recent studies [36].
In fact, the base flow consists of Poiseuille and Couette parts
separated by a nodal surface [31]. The first instability gives
rise to streamwise vortices which should be subject to a sec-
ondary instability of traveling waves due to the shear insta-
bility of the nodal surface. The growth of this secondary
instability can trigger the sudden occurrence of turbulent
fluctuations in the bulk flow. Recent experimental studies
have shown that the intermittency can occur at Re~400 in
the plane Couette flow [37,38], while it occurs at Re~1000
in the plane Poiseuille flow [16]. We use the latter value to
estimate the critical Taylor number for intermittency in the
Taylor-Dean system (since the Poiseuille part is the largest of
the base flow) and we find that Ta*=Re* (h/R)"*=279,
where h=2d/3 is the width of the Poiseuille part of the base
flow (this value is 15% higher than the observed threshold of
STI). The existence of the Dean rolls and of the Couette flow
might lower this value. However, no firm conclusion can be
made before an extensive study is performed on the Poi-
seuille flow with the velocity profile of Fig. 1 in order to
confirm this mechanism.

VL. CONCLUSION

The spatiotemporal intcrmittency observed in a Taylor-
Dean system with the inner cylinder fixed has been investi-
gated. The main parameters characterizing this transition sce-
nario have been computed from experimental data. The STI
exhibits two different dynamical regimes (algebraic and ex-
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ponential). Near the onset of the exponential regime, the cor-
relation length and correlation time of domains diverge. This
behavior calls for an analogy of this transition with second-
order phase transitions in equilibrium systems. The measured
exponents in the Taylor-Dean system differ from those ob-
tained in other recently reported experiments, which raises
again the question of the universality of spatiotemporal in-
termittency. The physical origin of spatiotemporal intermit-

tency remains an open question which necessitates further
investigation.
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